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A method is presented to determine the bulk elastic properties of isotropic elastic closed-cell foams
from impedance tube sound absorption tests. For such foams, a resonant sound absorption is
generally observed, where acoustic energy is transformed into mechanical vibration, which in turn
is dissipated into heat due to structural damping. This article shows how the bulk Young’s modulus,
Poisson’s ratio, and damping loss factor can be deduced from the resonant absorption. Also, an
optimal damping loss factor yielding 100% of absorption at the first resonance is defined from the
developed theory. The method is introduced for a sliding edge condition which is an ideal condition.
Then, the method is extended to a bonded edge condition which is more easily achievable and
additionally enables the identification of the Poisson’s ratio. The method is experimentally tested on
expanding closed-cell foams to find their elastic properties in both cases. Using the found properties,
sound absorption predictions using an equivalent solid model with and without surface absorption
are compared to measurements. Good correlations are obtained when considering surface

absorption. © 2007 Acoustical Society of America. [DOI: 10.1121/1.2783126]

PACS number(s): 43.55.Ev, 43.20.Ye, 43.40.At [LLT]

I. INTRODUCTION

Many authors worked on the propagation of acoustical
and elastic waves in elastic open-cell porous materials. The
most used model is the one proposed by Biot' in which the
porous medium is modelled in two superimposed phases
(fluid and solid). The fluid phase (usually air) forms an in-
terconnected cell network which opens to the surrounding
medium. The two phases are elastically coupled and a rela-
tive motion between the two phases exists. Three waves
propagate in the porous material (two compressional waves
and one shear wave). The energy carried by the waves is
dissipated through structural damping loss, viscous loss (due
to relative motion between the two phases), and thermal
loss.> In the case of elastic closed-cell foams, there is no
relative motion between the fluid and solid phases. Conse-
quently, the only energy dissipation mechanisms are the
structural damping and thermal losses.” From the Biot’s
theory, only the elastic compression and shear waves now
propagate in the closed-cell foams. In this case, few specific
models were proposed to study the acoustic dissipation
within this type of foams. The most common way of model-
ling these foams is to use a solid model with equivalent
elastic properties. Ingard3 proposed a method to derive these
equivalent properties from the knowledge of the elastic prop-
erties of the material from which the skeleton is made, and
the properties of the trapped air in the closed cells. The
equivalent properties independently account for the thermal
loss (which is frequency dependent) and the structural damp-
ing loss of the skeleton material. However, in many situa-
tions the properties of the skeleton material are not known
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after the foaming process. Also, even if the core of these
foams is made of closed cells (i.e., no propagation of acous-
tical waves within the core), their surface may show some
irregularities and open cells (e.g., exploded cells). In this
case, the surface may be seen as a thin resistive layer show-
ing some surface sound absorption.

To account for the surface sound absorption of closed-
cell foams, a model was worked out by Wojtowicki and
Panneton.* In this work, it was shown that closed cell foams
show resonant sound absorption (i.e., sound absorption at
elastic resonances) with residual surface absorption (apart
from resonances). To model this type of acoustic behavior,
the closed-cell foams are modeled as a two-layer material: A
resistive layer covering a core made of an equivalent solid
with bulk elastic properties. The bulk elastic properties ac-
count for the structural damping and thermal losses. The re-
sistive surface layer is characterized by its static airflow re-
sistivity. Although the resistivity can be easily identified, the
key element in the proper use of this so-called “surface ab-
sorption solid model” is the fine characterization of the bulk
elastic properties.

The main objective of this work is to develop a method,
based on sound absorption measurements, for the character-
ization of the bulk elastic properties of closed-cell foams—
notably those from heat expanding foam process.4 In this
particular case, the produced samples have generally irregu-
lar surface and thickness that prevent the use of existing
methods for the elastic characterization of column foam
samples.s_10 Brief descriptions of these methods are given
elsewhere.’

This article is organized as follows. In Sec. II, the theory
behind the method is first introduced for the sliding edge
condition for which the Young’s modulus and damping loss
factor can be deduced. Then, the method is extended to the
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FIG. 1. Configuration of the equivalent solid foam column tested in a rigid
wall impedance tube.
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bonded edge condition which additionally allows for the
identification of the Poisson’s ratio. In Sec. III, the method is
experimentally tested for characterizing the bulk elastic
properties of two foams: one with the sliding edge condition
and one with the bonded edge condition. Then, sound ab-
sorption predictions using the identified bulk elastic proper-
ties are compared to impedance tube results. Finally, Sec. IV
concludes this work.

Il. THEORY

A. Sliding edge condition
1. First natural frequency

In the following, the elastic closed-cell foam under con-
sideration is considered as being isotropic and homogeneous
so it can be modeled a priori as an equivalent solid. Also, it
is assumed that its elastic properties are constant, or only
slightly vary, with the frequency—at least around the first
resonant absorption frequency. A column of this foam is now
excited by a normal incidence acoustic plane wave as shown
in Fig. 1. The column is backed by a rigid wall and a sliding
condition is applied on its periphery. Although it is difficult
to obtain in practice, the sliding condition may be approxi-
mated by lubricating the sample periphery and slightly un-
dercutting sample diameter. Under this configuration, the
normal sound absorption is of a resonant type3’4 with the first
peak absorption occurring at the first compression natural
frequency of the column''

w 1 K
TR (1)
2 4L P1

where L is the height of the column, p; the bulk density of
the foam, and K, its bulk compression modulus.

2. Finding Young’s modulus

Assuming that the height and the bulk density are
known, the first resonant frequency is determined from the
normal sound absorption coefficient curve and the bulk
modulus of the foam is deduced from Eq. (1):

K, = P1(4f1L)2- (2)

As the equivalent solid is isotropic, one can relate the bulk
modulus to the Young’s modulus E and Poisson’s ratio v by

(1-v)

= E -2 ©

Equation (3) shows that an infinite number of couples (E, v)
yields the same bulk modulus K. Hence, the Poisson’s ratio
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is required in order to find the Young’s modulus from the
bulk modulus. Assuming Poisson’s ratio known, the Young’s
modulus is given by
(1+v)(1-2p)

E= (1-» K. 4)
As the Poisson’s ratio has little influence for a sliding edge
condition, and based on the works by Gibson et al.,'* a mean
Poisson’s ratio of 0.33 can be used for typical closed-cell
foams. Also, as Poisson’s ratio is only slightly frequency
dependent, one could use a static method to measure the
Poisson’s ratio.

3. Finding bulk damping loss factor

The normal sound absorption coefficient of the column
shown in Fig. 1 is expressed in terms of its surface acoustic
impedance Z, and the characteristic impedance of air Z,

Zs(w) - ZO :

Z(@)+ 2 5

a(w)=1-

where w is the angular frequency. As the cells of the foam
are closed, there is no relative motion between the air in the
cells and the structure, therefore no friction losses as in open-
cell foams.® The only losses are due to structural damping
and heat conduction (relative to the harmonic compression of
the air in the cells). Making use of a bulk damping loss factor
n combining both dissipation mechanisms, the losses can
now be introduced in the bulk modulus as follows:

—~ —
K,=K,\N1+jn. (6)

Considering only elastic compressional waves in the ma-
terial, the normal surface impedance of the sliding edge
sample on hard backing may be written as

Z,=\pK, COth(ij 1/ %) , (7)
K,

where (pllzh)”2 is the characteristic impedance of the mate-
rial, and (p,/ K, ») /2 is the inverse of the propagation speed of
the compressional waves in the material. Using Egs. (1) and
(6), the surface impedance (7) now rewrites

2 — T W 1
Z,=—pw; L1 +j7]coth<j—— ] ) (8)
m o NI +jn

At the first resonance (w=w;), the surface impedance be-
comes

Z(w)) L( th( T 1 ) T 1 ) 9)
(w)=piwL| co - - .
s\W1) = P1w ]2V/1 +in 2\‘"1+j7]

Assuming the damping loss factor is low enough (less than
1), Eq. (9) simplifies to

Z(w)) = %lelLﬂ- (10)

Consequently, at the first elastic resonance, substituting Eq.
(10) into Eq. (5) yields the approximated sound absorption
coefficient
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FIG. 2. Relative error on sound absorption due to the approximated surface
impedance [Eq. (10)].

w Ln-27,|?
alw)=1- P11 L~ 2249 (11)
pro\Ly+2Z,
or, using Eq. (1),
mpK,m—4Z, |
a(wy) = 1 - | R0 (12)
WV’leb')?+4ZO

Equation (11) implies that the bulk damping loss factor
of the material can be deduced from the sound absorption
coefficient, knowing the bulk density of the material, the first
resonance frequency, and the characteristic impedance of air.
This is true only if the normal sound absorption coefficient
shows the first resonant peak absorption in the measured fre-
quency range.

Equation (12) is presented in order to show that the am-
plitude of the resonant absorption does not depend on the
thickness of the sample. Consequently, changing the thick-
ness will shift the peak absorptions only in frequencies and
not in amplitude.

As the absorption coefficient given by Eq. (11) is valid
for low damping loss factors, Fig. 2 shows how this approxi-
mation diverges from the exact solution in function of the
loss factor. One can note that the absolute error is less than
2% for damping loss factors smaller than 1. Consequently,
Eq. (11) can be used with confidence for a large number of
elastic closed-cell foams as most of them have a loss factor
less than 1.

4. Optimal and reduced damping loss factors

Figure 3 shows how the sound absorption coefficient at
first resonance varies with the damping loss factor. The
sound absorption coefficient reaches almost 100% absorption
for an optimal damping loss factor. This optimal loss factor
is deduced from Eq. (11) by setting a(w;)=1. This yields:

27,

E— (13)
w;p, L

Nopt =
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FIG. 3. Sound absorption coefficient at the first resonance in function of the
reduced structural damping loss factor for closed-cell foams.

Now, one can define the reduced damping loss factor as
the ratio of the actual damping loss factor to the optimal
value

n
=" (14)
opt

Substituting Eq. (14) into Eq. (11), the sound absorption at
first resonance reduces to

7]r_1 .

alw)=1-
(@)=1-| 1

(15)

Apart from the optimal damping loss factor, Eq. (15) and
Fig. 3 show that there exist two reduced damping loss factors
for a given value of a(w,). The first solution corresponds to
a low damping solution, and the second one corresponds to a
high damping solution. These solutions are, respectively,

ol _ 4-2a(w;) —4V1 - alw)
! 2a(wy)

(16)
o2 _ 4-20(w;) +4V1 - alw;)
' 2a(w)

s

soll — sol2

with 7.7 < 75, < 7,

Figure 4 shows the normal incidence sound absorption
coefficient of an equivalent solid for the optimal damping
loss (13), and the damping loss solutions obtained from Egs.
(14) and (16) with a(w,)=0.7. The absorption coefficient is
computed using Egs. (5) and (7) with L=30 mm, p,
=90 kgm™, K,=536 kPa, and Z,=412 Pasm™'. As ex-
pected, the main difference between soll and sol2 lies in the
width of the peak and not in its amplitude.

Here, the optimal damping introduced through Eq. (13)
must be used with caution since it is only valid for a sliding
edge condition on small samples, or for samples of laterally
infinite extent (or large extent using a free field measuring
method"?). If other boundary conditions are used on small
samples, another set of equations needs to be developed.
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FIG. 4. High and low solutions of the reduced damping loss factor.

B. Bonded edge condition

The previous section has shown the theory of a method
to find the bulk Young’s modulus and damping loss factor for
a sliding sample of solid or closed-cell porous materials on
hard backing. Unfortunately, the sliding condition in an im-
pedance tube cannot be perfectly ensured in practice. There-
fore, this section extends the proposed method to another
type of boundary condition: the bonded edge condition. In
this case, the same assumptions as previously defined can be
first made (i.e., the Poisson’s ratio is assumed to be known
and the sound absorption at the resonance is only governed
by the bulk damping loss factor).

1. Finding Young’s modulus

Considering a bonded edge condition and a hard back-
ing, the first compression resonance depends on the shape
factor s and the Poisson’s ratio v. This frequency can be
expressed by

pooh e K (17)

2m 4L p1
where the shape factor s is the ratio of the diameter of the
sample to its thickness: i.e., s=D/L.

Comparing to the first resonance frequency of a sliding
sample given by Eq. (1), Eq. (17) becomes:

ﬁ=cb(V,S)f1~ (18)

The factor ¢, is called the bonded edge correction factor.
This coefficient only depends on the shape factor s and Pois-
son’s ratio v. A two dimensional axisymmetric finite element
method (FEM) model has been used in order to compute this
coefficient. A CPU Intel Pentium D, 3 GHz, 4 GB RAM has
been used for the entire study. An eigenfrequency analysis is
employed for the bonded sample. The correction factor ¢, is
simply the ratio of the first resonance frequency calculated
with the FEM model to the frequency given by Eq. (1). Note
that the FEM simulations for a sliding sample correlates with
Eq. (1). From the FEM results, an abacus of the correction
factor is generated—this eliminates the use of FEM simula-
tions in the future. This table contains the bonded correction
factor ¢, for s €[0.05 5] and v € [0 0.499]. Then, a function
is implemented for interpolating the bonded correction factor
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FIG. 5. Computation of the bonded correction factor c;,.

from a given couple (s, v). Figure 5 shows how this correc-
tion factor evolves with the shape factor for some Poisson’s
coefficients. The low limit of the correction factor is one. A
factor below 1 would imply that the first resonance is no
longer a compression resonance. The theory would not be
valid anymore. Consequently, with a shape factor of 1.5, the
method would work for characterizing materials with Pois-
son’s ratio up to 0.45. This is quite acceptable for typical
closed-cell foams.

Still assuming that the Poisson’s ratio is known, the bulk
modulus is obtained from Egs. (2) and (18), knowing the
bulk density p,, the thickness L and the shape factor s of the
sample:

2
Kb=p1<4 ﬁ L) . (19)
cp(v,s)
Finally, the Young’s modulus is deduced from Eq. (4).
Contrary to the sliding edge condition, when the bonded
edge condition is considered, the bonded sample undergoes
shear stresses and the Poisson’s ratio plays an important role.
Taking advantage of this observation, a method for finding
the Poisson’s ratio from impedance tube absorption tests is
given in a next paragraph.

2. Finding bulk damping loss factor

Considering a bonded sample on a hard backing, the
sound absorption coefficient at the resonance still reaches a
maximum for an optimal damping loss factor ngp[. This be-
havior is similar to the sliding case illustrated in Fig. 3. Thus,
the sound absorption coefficient could still be expressed by

7]r_1 :

n+1

=1 (20)

a(w)=1- -
770p[

Once the reduced damping loss factor has been found
from the sound absorption at the resonance, the optimal
damping loss factor is required. Unfortunately, Eq. (13) can-
not be used anymore. Indeed Wﬁpﬁ& Mopt and the greatest dif-
ficulty lies in obtaining this optimal factor. One calls this
factor the bonded edge optimal loss factor in opposition to
the sliding edge optimal loss factor defined by Eq. (13).
Now, one needs to describe how ngt evolves in function
Topt- T0 do so0, the bonded edge optimal loss factor is com-
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TABLE I. Properties used for the linear relation between the two optimal loss factors

s v cp b ms K, (Pa) nﬁp,
3.35 0.2 1.0077 0.083 0.0977 4,038,500 0.095
448,720 0.105
200,000 0.12
134,620 0.13
3.95 0.1 1.008 0.054 0.1075 4,038,500 0.065
448,720 0.08
200,000 0.095
134,620 0.105
1.25 0.3 1.4997 0.001 0.2181 4,038,500 0.015
448,720 0.04
200,000 0.055
134,620 0.07
14 0.2 1.5103 0.001 0.2196 4,038,500 0.015
448,720 0.04
200,000 0.055
134,620 0.07
0.5 0.3 3.2744 0.003 0.2535 4,038,500 0.01
448,720 0.02
200,000 0.035
134,620 0.04
0.6 0.1 3.3316 0.000 0.3123 4,038,500 0.01
448,720 0.025
200,000 0.035
134,620 0.045
puted for a number of couples (s, v). The bulk density of the
sample is fixed to 90 kg m™3, its diameter to 30 mm, and the
characteristic impedance of the air is fixed to 412 Pas m™!.
The couples (s, v), the bulk modulus K, and the bonded edge B
correction factor ¢, are given in Table I. Figure 6 shows the —_
linear relation linking the two optimal loss factors for 3 cor- EL 03
rection factors c,. The three graphics correspond to the three a 502
sections of Table I, respectively. Each correction factor is " 0.1 RS Ve e e A
obtained from two different couples (s, v) and a section cor- 0
responds to an approximately equivalent correction factor o 05 1 15 2 25
(e.g., 1.0, 1.5, or 3.3). All these cases lead to a linear relation (S"fcb)"opt
of the form: 02
T = —=m(cy) Mg+ b(cy). (1) 015
) &
5 01
where m and b are two factors depending on the bonded edge a0 5
correction factor c,,. T o005 /
These factors are computed for a range of correction 0
factors ¢, € [0,5]. Figure 7 represents ms and b as functions 0 0.1 02 03 0.4 0.5
of the correction factor. For each coefficient, a polynomial (sm’cb)“opt
approximation is carried out. These polynomial approxima- 01
tions enable a significant simplification for computing the
bonded optimal loss factor from the sliding optimal loss fac- —
tor given by Eq. (13). These polynomial relations are also ‘91 0.05
plotted in Fig. 7 and are expressed as follows: a g
¢y <2 = mlc,)s =0.0028x> — 0.0484x* + 0.3206x°
— 1.0238x> + 1.6004x — 0.7462, % o002 004 006 008 ot
(22) (sxfcb)nopt

cp =2 = mlcp)s =0.0256x + 0.1876,

and
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FIG. 6. Linear relation between the bonded and the sliding optimal damping
loss factors. (1) ¢,=1.0, (2) ¢,=1.5, and (3) ¢,=3.3.
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FIG. 7. (Color online) Computations of m and b in function of the bonded
correction factor c;,.

cp < 2= b(cy) =0.179x° - 2.0054x° +9.2993x*
—22.859x° + 31.447x*

—22.996x +7.0021,

(23)
¢, =2=b(c,) =0.

Finally, assuming that the Poisson’s ratio is known, the
bonded edge correction factor c;, is deduced from the abacus
previously computed (see Fig. 5). The coefficients m and b
are calculated with relations (22) and (23). Then, the bonded
edge optimal loss factor ﬂﬁpl is deduced from Eq. (21). The
actual damping loss factor is, at last, calculated from the
sound absorption coefficient at the resonance using Eqgs. (16)
and (20).

3. Finding Poisson’s ratio

By looking at Eq. (1), one can note that the product f;L
is kept for the same material. Thus, considering two samples
defined by [p1.Kp,51,L, ,f{l’(v,sﬂ] and
[p1.Kp.52,Ls,f2(v,5,)], residue R is defined as follows:

_ | i), fisy)

1= PAN
Cb(V7sl) Cb(V’SZ)

R (24)
This residue is equal to zero for an admissible solution of the
Poisson’s ratio. Due to the nature of ¢, R is similar to a
second order polynomial having two roots. Sometimes, two
solutions are admissible for the Poisson’s ratio. To get
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FIG. 8. (Color online) Residue in function of the Poisson’s ratio.

around this problem, a third sample is used. This sample is
defined by [p;,K),,s3,Ls,f5(v,s3)]. The residue R becomes

| Aes) . Ay ‘ Fv.s)
k= Cb(V,Sl)L]_Cb(V,Sz)LZ " Cb(VvSI)L]
sy, ‘ . (25)
Cb(V,S3)

Independently of the Young’s modulus, the residue is equal
to zero for the actual value of the Poisson’s ratio. Thus,
knowing the three frequencies fb , fb, and f? and the geom-
etries of the samples (L,,s;,L,,5,,Ls,53), the Poisson’s ratio
can be deduced from the computation of residue R. This
computation is illustrated in Fig. 8.

lll. EXPERIMENTAL RESULTS

In this section, the previous theory is experimentally
tested on two expanding closed foams: one with a sliding
edge condition and one with a bonded edge condition. The
normal sound absorption coefficients are measured with a
29-mm Bruel & Kjaer 4206 impedance tube following stan-
dard ASTM E1050-98 or ISO 10534-2:1998.

A. Sliding edge condition

In this first test, the sample is cut using pressurized wa-
ter jet to ensure nice circularity and a diameter of
29.0%09) mm. With this diameter, once mounted in the 29-mm
impedance tube, it is assumed the sample can slide freely
along the tube axis, and leakage around the sample is negli-
gible. In this case, the first compression resonance frequency
and related maximum absorption are easily determined from
the measured absorption shown in Fig. 9. These results to-
gether with the known material properties and dimensions
are listed in Table II

Assuming that the Poisson’s ratio is equal to 0.33, the
bulk modulus is deduced from Eq. (2) and the Young’s
modulus using Eq. (4). This yields, respectively, K,
=546 362 Pa and E=368 753 Pa. On the other hand, the op-
timal damping loss factor, reduced damping loss factor, and
bulk damping loss factor are obtained from Egs. (13), (16),
and (14), respectively. This yields, #,,=0.041, 7o
=11.160, and 7=0.458.

F. Chevillotte and R. Panneton: Elastic characterization of foams
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FIG. 9. Normal sound absorption coefficient of the tested expanding closed-
cell foam with the sliding edge mounting condition. Comparison between
impedance tube measurement, solid simulation, and solid simulation with
surface absorption.

Using the found parameters, the sound absorption coef-
ficient predicted using the equivalent solid model [Egs. (5)
and (7)] is compared to impedance tube measurements in
Fig. 9. The simulation correlates well with the measurement
at the resonance peak. However, for frequencies higher than
1000 Hz, the predicted absorption is underestimated. This is
due to the fact that the surface sound absorption is not con-
sidered with the equivalent solid model (i.e., surface is as-
sumed impervious). In order to correct for this, the solid
model with surface absorption proposed in Ref. 4 can be
used. In this case, one needs to define the thickness of the
surface absorption layer by

1 [ 2p
d== 0

- 9
2 wmin0-¢

(26)

where w,;, is a low frequency (here 628 rad s™!, 100 Hz, is
used), P, the atmospheric pressure (101 325 Pa), and o¢ the
product of the static airflow resistivity and open porosity of
the surface absorption layer. In this case, the value of o¢
was iteratively found to be o¢p=10" N s/m*. This yields,
from Eq. (26), d=2.8 mm, i.e., the thickness of the surface
absorption layer (thin resistive layer accounting for the fact
the surface is not purely impervious).

Consequently, with a 2.8-mm surface absorption layer
covering an 11.3-mm equivalent solid core (total thickness is
14.1 mm), the prediction of the surface absorption model is
compared to measurements in Fig. 9. This time the correla-
tion with measurements is excellent for the whole frequency
range.

For this material, one can note that the sound absorption
at the first resonance is relatively low. This is logical since
the actual damping loss factor of the material (0.458) is very
far from the optimal value (0.041).

TABLE II. Properties of the 29-mm diameter sample of expanding closed-
cell foam used for the sliding Edge Condition test.

Bulk density p; (kgm™) 299
Thickness L (mm) 14.1
Resonance frequency f; (Hz) 776
Sound absorption a(w;) 0.308

J. Acoust. Soc. Am., Vol. 122, No. 5, November 2007

TABLE III. Properties of the three 29-mm diameter samples of the expand-
ing closed-cell foam used for the bonded edge condition test.

Sample 1 Sample 2 Sample 3
Bulk density p; (kgm™) 83.0 80.4 81.8
Thickness L (mm) 18.8 27.1 35.8
Shape factor s 1.60 1.11 0.84
Resonance frequency f; (Hz) 1176 992 896
Sound absorption a(w;) 0.56875 0.53925 0.51417

B. Bonded edge condition

For this second test, the method is now experimentally
tested on samples with the bonded edge mounting condition.
Three samples of a different length are required for comput-
ing the Poisson’s ratio. Here, each foam sample was care-
fully and directly heat expanded in a hollow cylinder having
a 29-mm inner diameter. The part of the foam running over
the ends of the cylinder was cut. Then, the cylinder was
mounted on the tube using a special end termination ensuring
a rigid backing.

The data related to each sample are summarized in Table
III, and the absorption curves are given in Fig. 10. Using
these data, the Poisson’s ratio is calculated with the residue R
defined by Eq. (25). This yields v=0.43+0.005.

The correction factor can now be read from the abacus
in Fig. 5 and the bulk modulus can be computed for each
sample from Eq. (19). In order to obtain a good approxima-
tion of the Poisson’s ratio, the three shape factors must be
different. Moreover, from this abacus, one can note that the
correction factors converge to 1 when either the shape factor
is increased or the Poisson’s ratio is increased. It is thus
easier to find low Poisson’s ratio (¥<<0.45). The ability to
find the Poisson’s ratio is increased as the shape factors are
decreased.

The Young’s modulus can now be deduced from the
found Poisson’s ratio and the average bulk modulus using
Eq. (4). This yields E=214 897+2853 Pa. Finally, the opti-
mal damping loss factor is obtained from Egs. (21) and (13).
Similarly to the sliding condition, the actual bulk damping
loss factor is deduced from Egs. (16) and (20). This yields
7=0.22+0.04.

The sound absorption coefficient is now computed with
the equivalent solid model and compared to the impedance
tube measurements in Fig. 10. The correlation with measure-
ments is good especially at the resonance peak. Again, the
surface absorption model * is used in order to correct for the
underestimation of the predicted absorption (here, o¢=35
X 10° N s/m* and d=4.01 mm were used). The residual
variation between these latter predictions and the measure-
ments may be attributed to the fact that the real elastic pa-
rameters of the expanded foam are not necessarily constant
with the frequency.

IV. CONCLUSION

In this work, a method was proposed to determine the
bulk elastic properties of soft equivalent solids or closed-cell
foams from simple impedance tube absorption tests. The
method was tested experimentally with success in laboratory.
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FIG. 10. Normal sound absorption coefficients of the three samples of the
tested expanding closed-cell foam with the bonded edge mounting condi-
tion. Comparison between impedance tube measurement, solid simulations,
and solid simulation with surface absorption. (a) Sample 1; (b) Sample 2;
and (c) Sample 3.
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It has revealed that the properties found with the proposed
method can be used in the surface absorption solid model
worked out in Ref. 4 to yield excellent correlations with
measurements.

However, the accuracy of the method relies mostly in
the proper control of the mounting conditions in the imped-
ance tube. This is actually the most important limitation of
the method, especially on small sample diameters for which
the absorption measurement is very sensitive to boundary
conditions. Further tests are required to validate the robust-
ness of the proposed method.
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